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ABSTRACT 

Bifurcation means a division, a rending apart. How and when physical, chemical and biological systems sustain sudden 

barters of the behavior is the appearance of bifurcation. In the case of logistic bifurcation, we are considering the limits or 

end behaviors of logistic systems. To understand bifurcation behavior, it is often helpful to look at the bifurcation diagram. 

Saddle-node bifurcation and period-doubling bifurcation are speculated. Bifurcation diagram on logistic map for several 

iterations are analyzed. We have conferred aggregate espials for different parameter values. Finally, we have exhibited 

that the schemes are chaotic and non-chaotic for detached parameter appraises. 
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INTRODUCTION 

A casual characteristic change of a way to the parameter values behavior is called bifurcation. [1] Bifurcations ensue in both 

incessant systems and detached systems. The name "bifurcation" was first indicated by Henri Poincare in 1885 in the first 

paper in mathematics showing such a behavior.[2]Henri Poincaré also later named manifold complexion of stagnant points 

and categorized them. Bifurcation theory has been used to append quantum scheme the dynamics of their transcendent 

analogues in atomic scheme,[3][4][5]  molecular systems,[6] and resonant tunneling diodes.[7] Bifurcation theory has also been 

applied to the study of laser dynamics[8] and a number of theoretical examples which are difficult to access experimentally 

such as the kicked top[9] and coupled quantum wells.[10] The prevalent contention for the link between quantum scheme and 

bifurcations in the prevalent equations of pace is that at bifurcations, the subscription of prevalent orbits becomes large, as 

Martin Gutzwiller points out in his classic[11] work on quantum chaos.[12]For some pointed out parameter values of r

bifurcation arises in a one-parameter family of logistic function. Saddle-node is the just exigent bifurcation. In the saddle-

node incident, the way in which the bifurcation arises may be capsize, Also, hoops may endure a period-doubling 

bifurcation. [13][14] 

Definition of saddle-node bifurcation and Period doubling bifurcation. 

Saddle-Node Bifurcation 

A saddle-node is a conflict and invisibility of two positions in dynamical systems. In disembodied dynamical systems the 

tant amount bifurcation is continually substitute called a convolution bifurcation. Another name is blue skies bifurcation in 

allusion to the snappy designing of two fixed points. A saddle-node bifurcation also befalls if the trace of the bifurcation is 

tumbled. Revolvedacme may endure a saddle-node bifurcation. If the cycle respite is one-dimensional, one of the 
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equivalence mites hectic (the saddle), while the other is durable (the node).Saddle-node bifurcations may be affiliated with 

hysteresis noose and plague. Bifurcations narrate alteration in the durability or fixity of fixed points as a seizure parameter 

in the scheme innovates. As an excellently naïve affirmation of a bifurcation in a dynamical system, suspect thing co here 

not on turret of a vertical beam. The mass of the thing can be envisaged of as the seizure parameter. As the mass of the 

thing increases, the beam's drift from vertical, which is x, the dynamic variable, resides comparatively consolidated. The 

mass proximity a certain point – the bifurcation point – the beam will abruptly ouch. Switches in the control parameter in 

the end switched the characteristic dealing of the system. 

Consider the equation of the form rx
dt

dx +−= 2  

Where r is the seizure parameter. Asr is greater than 0, the scheme has one adjusted fixed point and one 

unadjusted fixed point. Asr abates the fixed points shakes simultaneously, shortly clash into a semi-adjusted fixed point at

0r = , and to exist when .1<r  

Figure 1 Bifurcation Diagram for a Saddle Node Bifurcation of the Equation rx
dt

dx +−= 2
 

Figure 1 shows the behavior of the scheme changes meaningful when the seizure parameterr  is 0, 0 is 

a bifurcation point. This example bifurcation is called the saddle-node bifurcation.  

 
Figure 1 

 
Period Doubling Bifurcation 

A period doubling bifurcation in a discrete dynamical system is a bifurcation in which a slight change in a parameter value 

in the system's equations leads to the system switching to a new behavior with twice the period of the original system. With 

the doubled period, it bears twice as many repetitions of a process as prior for the numerical values visited by the scheme 

to revolve them. A period doubling cataract is a succession of doublings and into the bargain doublings of the repeating 

feast, as the parameter is constant therewithal and therewithal. Period doubling bifurcations can also ensue in incessant 

dynamical systems, namely as new is tether arises from an existing tether cycle, and the epoch of the newish tether cycle is 

twice that of the old one. As the parameter innovates, a fixed point may innovate from attracting to repelling and, at the 

same, give birth to an attracting 2-cyle. Otherwise, the fixed point may innovative from repelling to attracting and, at the 

equivalent time, give birth to a repelling hoop of period 2. 



Analysis of Bifurcations for Logistic Families                                                                                                                                                                       3 

 
www.iaset.us                                                                                                                                                                                                        editor@iaset.us 

RESULTS AND DISCUSSIONS 

Logistic Family of Functions and Their Bifurcations 

Logistic Family of functions is given by )1( xrxF r −= . Here we observe the situations for different parameter values of

r . In fact, we will observe attracting and repelling fixed points together with phase portrait. Of course, bifurcation 

diagram to be sketched in each situation. 

Observation 1: the values of r  does rF  have an attracting fixed point at 0=x . 

Solution 1: First of all, note that 0=x is indeed fixed since .0)0( =rF using the fact that ).1()( xrxxF r −=′

we see that rxF r =′ )( , and so 0 is attracting for .11 <<− r  

Observation 2: The values of r does rF  have a nonzero attracting fixed point. 

Solution 2: Let’s find the other fixed point of :rF  

xxrx =− )1(  

02 =−−⇒ xrxrx  

0)1( 2=−−⇒ rxxr                                                                                                                                            3.1 

0)1(2 =−+⇒ xrrx  

0))1(( =−+⇒ xrrx  

r
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x

1−=⇒ or .0=x  

We may conclude from this that fix .
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Observation 3: The bifurcation that occurs when .1=r  

Solution 3: For rFr ,0≠  has two fixed points, namely 0 and .
1

r

r −
 For

r

r
r

1
,31

−<<  is attracting; likewise, 

for 0,11 <<− r is attracting. Asr decreases through the bifurcation point at .1=r The fixed point 
r

r 1−
transfers its 

attractiveness to 0 which continue to attract orbits unit 1−≠r . For 1−<r , both fixed points are repelling. 
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Observation 4: Phase portrait and bifurcation diagram near at1=x . 

Solution 4: See Figure 2 The horizontal asymptote at1=x implies that there is no member of the logistic family 

having 1 as a fixed point. The vertical asymptote at the origin implies that all members of the logistic family have two 

fixed points (and the two are unique for all 1−≠r  except the degenerate 0F  which is identically zero. 

Observation 5: The bifurcation that occurs when .3=r  

Recall from observation 3 that 0 is attracting for 11 <<− r , while
r

r 1−
is attracting for .31 << r  Thus, both 

fixed points are repelling for .3>r  

 
Figure 2: Bifurcation Diagram for the Logistic Family. 

 
Note that  

1
1
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
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=rr r

r
F  

Which suggests a 2-cycle may be lurking in the shadows. 

Observations 6: An explicit formula for the periodic points of period 2 for .rF  

First compute the second iterate of:rF  

( ) )1)(())1(1))(1(( 222
rxrxrxrxrxrxxrxrxF r

+−−=−−−=

 
))(()( 423222423223222 xrxrxrrrxrxrxrrxxrxrrxr −++−=−+−+−  

.2)1( 4333222 xrxrxrrxr −++−=  

 To find the fixed points ofF r

2
(i.e. the period 2 points of ),rF set ( )xF r

2
 equal to �, rearrange terms and get

.2)1()1( 4333222 xrxrxrrxr −++−−  (3.2)This 4th –degree polynomial may be factored into a pair of quadratics. One 

of these factors must be( ) 21 rxxr −−  since the fixed points of rF are also fixed points ofF r

2
 (see Equation 3.1). Long 

dividing out this 2nd-degree polynomial from (3.2), we find that 
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This new factor may be solved using the quadratic formula: =
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Hence, this 2-cycle exists when 3>r or 1−<r which agree with the results of observation 3. 

Proposition: Let ( ) )1( xrxxF r −=  be a logistic family of functions. Then we have the following observations: 

• The values of r  does rF  have an attracting fixed point at 0=x . 

• The values of r does rF  have a nonzero attracting fixed point. 

• The bifurcation that occurs when .1=r  

• Phase portrait and bifurcation diagram near at 1=x . 

• The bifurcation that occurs when .3=r  

• An explicit formula for the periodic points of period two for .rF  

Bifurcation Diagram on Logistic Map for Several Iterations 

To understand bifurcation behavior, it is often helpful to look at the bifurcation diagram.  

   
Figure 3: (A) When r = 1.5,10th Iteration, (B) When r = 2.1,20th Iteration, (C) When r = 2.58,30th Iteration.  

   
Figure 3: (D) When r = 3.57,60th Iteration, (E) When r = 3.68,100th Iteration, (F) When r = 4,150th Iteration. 
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Figure 5: A bifurcation in the logistic family )1()( xrxxf r −= , for several parameter values of r and several iterations. 

We have accomplished that when 5.1=r  to 4and 57.3=r to 4and the number of iterations taken 10 to 50 

times, the illustrated figures behooving narrow to narrower. 

Bifurcation Diagram of Logistic Function for Differ ent Parameter Values 

A period-doubling bifurcation is .3for )1()( =−= rxrxxf r  This function is called Logistic function. The Logistic 

function ),1()( xrxxf r −=  where r  is a parameter. For fixed point xxf r =)(
1

0 , r

r
x or x P

r

−
⇒ = = =  (say). 

If ,1>r  then rf  have two fixed points: one at 0=x  another at .rPx =  

If ,1=r  then 0=x  is the only fixed point for .rf  

• If 1=r , a trans critical bifurcation occurs at .01 =P  

• If 3=r , a period-doubling bifurcation occurs at .
3

2
1 =P  

If ,45.3=r  another period-doubling bifurcation occurs and the period two attracting orbit splits into a period 

four attracting orbit and a period two repelling orbit. 

Figure 4: (A) r = 1, (B) r = 3, (C) r = 3.45. 
 
Some Bifurcation Diagrams are plotted for A Few Hundred Iterations. 

Figure 5 shows we have observed that bifurcations occur on the interval at 40 ≤≤ r , 41 ≤≤ r , 45.2 ≤≤ r , 

490.2 ≤≤ r , 43 ≤≤ r , 3.45 4r≤ ≤ , 3.54 4r≤ ≤ ,3.56 4r≤ ≤ , 3.63 4r≤ ≤ , 3.74 4r≤ ≤ , 

3.82 4r≤ ≤ ,3.72 3.92r≤ ≤ , 3.83 3.96r≤ ≤ , 3.80 3.85r≤ ≤ , 3.90 4r≤ ≤  and 

3.86 3.98r≤ ≤ . From the aloft sketch, tidy bifurcations are perceptible in the chaotic virtues of the diagram. 

Sometimes bifurcation is considered as a fractal. The same is true for all other non-chaotic points. We noticed that the 

windows of period three at 83.3=r , period five at 74.3=r , and period six at 63.3=r  in the above diagram. Sooth to 

say, chaotic nature ensues between the interim 3.57 and 4.  
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Figure 5: Bifurcation Diagram of Logistic Families for Differ ent Parameter Values.

(A) Logistic Bifurcation When 
 

Figure 5: (C) Logistic Bifurcation 
 

Figure 5: (E) Logistic Bifurcation 
 

Figure 5: (G) Logistic Bifurcation 
 

Figure 5: (I) Logistic Bifurcation When 
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Bifurcation Diagram of Logistic Families for Differ ent Parameter Values.

(A) Logistic Bifurcation When 40 ≤≤ r (B) Logistic Bifurcation When 

 
(C) Logistic Bifurcation When 45.2 ≤≤ r , (D) Logistic Bifurcation When

 

(E) Logistic Bifurcation When 43 ≤≤ r , (F) Logistic Bifurcation When
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Bifurcation Diagram of Logistic Families for Differ ent Parameter Values. 

(B) Logistic Bifurcation When 41 ≤≤ r . 

 
When 490.2 ≤≤ r . 

 

(F) Logistic Bifurcation When 43 ≤≤ r . 

 
) Logistic Bifurcation when 456.3 ≤≤ r . 

 

(J) Logistic Bifurcation When 474.3 ≤≤ r . 
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Figure 5: (K) Logistic Bifurcation 
 

Figure 5 (M) Logistic Bifurcation When
 

Figure 5: (O) Logistic Bifurcation 
 
CONCLUSIONS 

We have viewed sundry initial convictions of bifurcation, saddle

observations of logistic map, animation of a point “rolling” along the logistic curve

for several iterations are illustrated. Finally

chaotic ambiences for isolated parameter values.
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