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ABSTRACT

Bifurcation means a division, a rending apart. Hamd when physical, chemical and biological systemsain sudden
barters of the behavior is the appearance of bitian. In the case of logistic bifurcation, we a@nsidering the limits or
end behaviors of logistic systems. To understafutdzition behavior, it is often helpful to looktae bifurcation diagram.
Saddle-node bifurcation and period-doubling bifutioa are speculated. Bifurcation diagram on logisthap for several
iterations are analyzed. We have conferred aggeegaipials for different parameter values. Finalle have exhibited

that the schemes are chaotic and non-chaotic ftaaded parameter appraises.
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INTRODUCTION

A casual characteristic change of a way to therpater values behavior is called bifurcatidtBifurcations ensue in both
incessant systems and detached systems. The n#meadtion" was first indicated by Henri Poincare1885 in the first
paper in mathematics showing such a beha%denri Poincaré also later named manifold complexibstagnant points
and categorized them. Bifurcation theory has besad uo append quantum scheme the dynamics of tha@iscendent
analogues in atomic schef!™ molecular systent®, and resonant tunneling diod@sBifurcation theory has also been
applied to the study of laser dynanfitand a number of theoretical examples which arficdif to access experimentally
such as the kicked t6pand coupled quantum welt§! The prevalent contention for the link between quamscheme and
bifurcations in the prevalent equations of pactha at bifurcations, the subscription of prevaleritits becomes large, as
Martin Gutzwiller points out in his clas§it work on quantum chad¥For some pointed out parameter valuesrof
bifurcation arises in a one-parameter family ofi$tig function. Saddle-node is the just exigentitgétion. In the saddle-
node incident, the way in which the bifurcationsas may be capsize, Also, hoops may endure a peoigoling

bifurcation 3114

Definition of saddle-node bifurcation and Periodibling bifurcation.
Saddle-Node Bifurcation

A saddle-node is a conflict and invisibility of tyamsitions in dynamical systems. In disembodiedadyical systems the
tant amount bifurcation is continually substitutdled a convolution bifurcation. Another name igebkkies bifurcation in
allusion to the snappy designing of two fixed psirA saddle-node bifurcation also befalls if thece of the bifurcation is

tumbled. Revolvedacme may endure a saddle-nodechtfan. If the cycle respite is one-dimensionahe cof the
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equivalence mites hectic (the saddle), while tteiots durable (the node).Saddle-node bifurcatinag be affiliated with
hysteresis noose and plague. Bifurcations nartaeation in the durability or fixity of fixed potas as a seizure parameter
in the scheme innovates. As an excellently naifien&tion of a bifurcation in a dynamical systeraspect thing co here
not on turret of a vertical beam. The mass of ttiegt can be envisaged of as the seizure paranfethe mass of the
thing increases, the beam's drift from verticaljohhs X, the dynamic variable, resides comparstigensolidated. The
mass proximity a certain point — the bifurcatiorinpe- the beam will abruptly ouch. Switches in ttantrol parameter in

the end switched the characteristic dealing oktrstem.
. . dx _ .,
Consider the equation of the for@t— =—=X"+r

Where ['is the seizure parameter. Ass greater than 0, the scheme has one adjusted finint and one

unadjusted fixed point. ASabates the fixed points shakes simultaneouslyflghdash into a semi-adjusted fixed point at

I =0, and to exist wheti <1.
. . o o dx o,
Figure 1 Bifurcation Diagram for a Saddle Node Biftion of the Equa‘uoaa =—=X"+r

Figure 1 shows the behavior of the scheme changesnimgful when the seizure paramdteis 0, O is

a bifurcation point. This example bifurcation idled the saddle-node bifurcation.

unstable--_ _

stable

Figure 1
Period Doubling Bifurcation

A period doubling bifurcation in a discrete dynaatisystem is a bifurcation in which a slight chaimge parameter value
in the system's equations leads to the systemtimid¢o a new behavior with twice the period of tnginal system. With

the doubled period, it bears twice as many repestiof a process as prior for the numerical valigised by the scheme
to revolve them. A period doubling cataract is acgssion of doublings and into the bargain doukliofythe repeating
feast, as the parameter is constant therewithaltleem@withal. Period doubling bifurcations can aéstsue in incessant
dynamical systems, namely as new is tether aris@s &n existing tether cycle, and the epoch ofhhaish tether cycle is
twice that of the old one. As the parameter innesat fixed point may innovate from attracting épelling and, at the
same, give birth to an attracting 2-cyle. Otherwtbe fixed point may innovative from repelling dtiracting and, at the

equivalent time, give birth to a repelling hooppefiod 2.
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RESULTS AND DISCUSSIONS

Logistic Family of Functions and Their Bifurcations

Logistic Family of functions is given Hy .= rx (LX) . Here we observe the situations for different peter values of

r . In fact, we will observe attracting and repellifiged points together with phase portrait. Of @®yrbifurcation
diagram to be sketched in each situation.

Observation 1:the values off doesk, have an attracting fixed point4t= 0.

Solution 1: First of all, note thaiX = Ois indeed fixed sincd~, (0) = 0.using the fact that ', (X) = rx(L— X).

we see that ', (X) =1, and so 0 is attracting for1<r <1.
Observation 2: The values off doesF , have a nonzero attracting fixed point.
Solution 2: Let's find the other fixed point of
rX(d—Xx) =x
= rx—rx*-x=0
= (r-)x-rx*=0 3.1
= rx*+@1-rx=0

= (rx+@-r))x=0

r-1
=x=——or x=0.
r

r-1
We may conclude from this that fik .= {O, —} As a check, let's compute
r

[P e =2

Is attracting for—1<2-r <1= -3<r <-1=1<r <3
;

Observation 3: The bifurcation that occurs whah=1.

r-1
r

r-1
Solution 3: Forr # O, F, has two fixed points, namely 0 ard—. Forl<r <3, is attracting; likewise,
r

r-1
for—1<r <10is attracting. A$ decreases through the bifurcation point a1.The fixed point—— transfers its

attractiveness to 0 which continue to attract srbitittr # —1. Forr < —1, both fixed points are repelling.
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Observation 4: Phase portrait and bifurcation diagram neat at].

Solution 4: See Figure 2 The horizontal asymptotX & limplies that there is no member of the logistic ifgm

having 1 as a fixed point. The vertical asymptdt¢ha origin implies that all members of the logidamily have two

fixed points (and the two are unique for Bl# —1 except the degenerafe, which is identically zero.

Observation 5: The bifurcation that occurs whah= 3.

r-1
Recall from observation 3 that 0 is attracting$dr<r <1, while——is attracting fol <r < 3. Thus, both
r

fixed points are repelling fdr > 3.

-

~

1
)
1
1

Figure 2: Bifurcation Diagram for the Logistic Family.

Note that

r=1

Which suggests a 2-cycle may be lurking in the sisd

Observations 6:An explicit formula for the periodic points of ped 2 for F |.
First compute the second iteratefof:

F f(x) =r(rx@-X)L-rx(L=x)) =r(rx —rx?)@L-rx +rx?)

F(rx =122+ 53=rx2+r 531" = r(rx = (r +r)x*+r3-r*)

=12 —r? @+ r)x*+2r%3-r3x*.

To find the fixed points oFrz(i.e. the period 2 points &f ,),setF rz(x) equal tox, rearrange terms and get
(r2=)x-r2@+ r)x*+2r%3-r>". (3.2)This 4 —degree polynomial may be factored into a paiquddratics. One

of these factors must Iée—l)x —rx? since the fixed points oF , are also fixed points q.Erz (see Equation 3.1). Long

dividing out this 2*-degree polynomial from (3.2), we find that
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(r>=1)x—r?(L+ r)x*+2r>-r*

=371 (r +)x+(r +1
(r —D)x-rx> (r+dxr(r+d)

And so[(r =2)x —rx*][r2*—=r (r +)x+(r +1)] =

r(r+1) i\/rz(r +1)%-4r?(r +1) _
2r? -

This new factor may be solved using the quadratimfila: X =

r(r +1) +/(r +1)%4(r +1) (r +1)+w/(r +1)(r -

2r?

Hence, this 2-cycle exists when> 3 orr < —1which agree with the results of observation 3.
Proposition: Let F | (X) =rx(L—X) be a logistic family of functions. Then we have fbllowing observations:
« The values off doesF, have an attracting fixed point ¥t= 0.
« The values off doesF , have a nonzero attracting fixed point.
. The bifurcation that occurs wheh= 1.
« Phase portrait and bifurcation diagram neaXat 1.
. The bifurcation that occurs wheh= 3.

An explicit formula for the periodic points of ped two for F .

Bifurcation Diagram on Logistic Map for Several Iterations

To understand bifurcation behavior, it is oftenpfiel to look at the bifurcation diagram.

OSH MH H ‘ ‘H\ 035 0.6
04‘H M ‘H ‘H‘ ‘ 0.3 0.5
03 03 04
02 ‘H ‘\‘ 0.15 Q3
‘h m 01 02
01 “ j ‘ \ J \“‘ 0.06 | 0.1
20 2 4 6 8 10 5 10 15 0 5 D
Figure 3. (A) When r=1.5,10" Iteration, (B) When r = 2.1,2d" Iteration, (C) When r = 2.58,30" Iteration.
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Figure 3: (D) When r = 3.57,6 Iteration, (E) When r = 3.68,100' Iteration, (F) When r = 4,150" Iteration.
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Figure 5: A bifurcation in the logistic familyf, (X) = rx(L— X) , for several parameter values of r and severgtitns.

We have accomplished that whén= 15 to 4and r = 357to 4and the number of iterations taken 10 to 50

times, the illustrated figures behooving narromaorower.

Bifurcation Diagram of Logistic Function for Differ ent Parameter Values

A period-doubling bifurcation isf, (X) = rx(L— x) for r = 3. This function is called Logistic function. The Listic

r
function f, (X) =rx(L— X), wherer is a parameter. For fixed poifit(X) = X = x=0 or, x=——= P (say).
r

If r >1, then f, have two fixed points: one at=0 another atx = P,
If r =1, then x =0 is the only fixed point forfr.

 If r =1, atrans critical bifurcation occurs & = O.

2

« If r =3, a period-doubling bifurcation occurs B = 3

If r =345 another period-doubling bifurcation occurs and pleeiod two attracting orbit splits into a period

four attracting orbit and a period two repellindpitr

1 1 I
05 05
0 0
0 -05
-0.5 -1 -1
-1 -15
-15 2 2
-25
-2 -3t
-1 -05 0 05 1 -1 -5 0 05 1 755 o a5 1

Figure 4: (A)r=1, (B)r=3, (C) r = 3.45.
Some Bifurcation Diagrams are plotted for A Few Humlred Iterations.

Figure 5 shows we have observed that bifurcatiomsuroon the interval aD<r <4, 1<r <4, 25<r <4,
290<r<4, 3<r<4, 3.45sr< 4 3.54<r<43.56sr<4 3.63sr<4 3.74<sr< /4
3.82<r<43.72<r< 3.9, 3.83r<39 380<r<3.8;, 390<r<4 and

3.86< 1 < 3.9€ From the aloft sketch, tidy bifurcations are mgrible in the chaotic virtues of the diagram.
Sometimes bifurcation is considered as a fracthk $ame is true for all other non-chaotic pointe Kéticed that the

windows of period three &t= 383, period five at = 3.74, and period six af = 363 in the above diagram. Sooth to

say, chaotic nature ensues between the interimeéh84.
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Figure 5: Bifurcation Diagram of Logistic Families for Differ ent Parameter Values
(A) Logistic Bifurcation When O<r <4 (B) Logistic Bifurcation When 1<r <4

‘2.‘6‘ ‘ 28 ‘ 3 o 32 ‘ ‘3.‘4‘ ‘ ‘3.‘6‘ ‘ 38 ‘ ‘4

Figure 5: (C) Logistic Bifurcation When 25<r <4, (D) Logistic Bifurcation When 290<r < 4.
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Figure 5: (I) Logistic Bifurcation When 363<T <4 3y | ogistic Bifurcation When 34T <4
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Figure 5: (K) Logistic Bifurcation When 382<r <4, (L) Logistic Bifurcation When 372<r < 392.
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Figure 5 (M) Logistic Bifurcation When 383<r < 396, (N) Logistic Bifurcation When 380<r1 < 385

d.8BB 2.9 2.92 2.54 2.5& 3.%68

Figure 5: (O) Logistic Bifurcation When 390<r <4, (P) Logistic Bifurcation When 386<r < 398.
CONCLUSIONS

We have viewed sundrinitial convictions of bifurcation, sadc-node bifurcation, period doubling bifurcation. So
observations of logistic mapnimation of a point “rolling” along the logistic oe, bifurcation diagram on logistic m:
for several iterations ailustrated. Finall, we detached the bifurcation diagram of logistapnand their chaotic and r-

chaotic ambience®r isolated parameter valu
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